

VENUS Programming
Practices
Shareable Hamilton PDF

VENUS Programming Practices

2

Contents

1 Revision History .. 4

2 Introduction ... 5

2.1 Purpose ... 5

2.2 Scope .. 5

2.3 Related Documents ... 5

3 The Process .. 6

3.1 Before Programming .. 6

3.1.1 Review the System Configuration ... 6

3.1.2 Review the Requirements ... 6

3.1.3 Collect Required Labware ... 6

3.1.4 Identify Liquid Types ... 7

3.2 During Programming .. 7

3.2.1 Keep it Simple ... 7

3.2.2 Make it Readable .. 7

3.2.3 Avoid Copy/Paste Programming ... 7

3.2.4 Keep it Organized ... 7

3.2.5 Use Standard Libraries ... 8

3.2.6 Be Mindful of the Method Settings .. 9

3.2.7 Avoid Out-of-Bound Inputs .. 9

3.2.8 Maintain Version Control ... 9

3.2.9 Create Test Methods .. 9

3.3 After Programming ... 9

3.3.1 Simulate and Review .. 9

3.3.2 Conduct Water Runs ... 10

3.3.3 Test with Actual Liquids .. 10

3.3.4 Clean Up the Method .. 10

3.3.5 Save and Export ... 10

4 Use of Specific Functions .. 11

4.1 Comments ... 11

4.2 Tracing ... 12

4.3 Variables .. 13

4.3.1 Naming Variables ... 13

4.3.2 Scoping Variables ... 16

4.3.3 Declaring Variables ... 16

VENUS Programming Practices

3

4.4 Grouping .. 16

4.5 Naming Labware, Sequences, and System Decks ... 18

4.5.1 Labware and Sequences .. 18

4.5.2 System Deck... 18

4.6 Sub-Methods and Libraries .. 19

4.7 Timers .. 20

4.8 User Dialogs .. 20

4.9 File Handling .. 21

4.10 GUIs and Visual Libraries .. 22

5 Saving and Exporting ... 24

5.1 Saving .. 24

5.1.1 Folder Structure .. 24

5.1.2 Versioning and File Naming .. 24

5.1.3 Installation Folder ... 25

5.2 Exporting ... 25

VENUS Programming Practices

4

1 Revision History
Document

Version Date Revised By Revision Notes

Rev 0.01 2017-10-19 Eric
Sindelar

Document Creation. Used ASW Programming
Guideline and Good Programming Practice
Hamilton EMEA as templates.

Rev 0.02 2017-12-20 Eric
Sindelar

Edited document based on feedback from
applications managers and specialists

Rev 0.03 2018-12-19 Logan Falk Updated document style and content for external
use

Rev 0.04 2019-02-27 Eric
Sindelar

Renamed document to specify VENUS Software.
Updated variable naming format.

Rev 0.05 2022-07-22 Eric
Sindelar Updated GUIs and Versioning sections

All efforts have been made to ensure the accuracy of the contents of this document. If any
errors are encountered, Hamilton Company would greatly appreciate being informed of them, but
can assume no responsibility for any errors in this manual or their consequences.

Reproduction of any part of this manual in any form whatsoever without the express
written consent of Hamilton Company is forbidden. The contents of this manual are subject
to change without notice.

Copyright© 2018 Hamilton Company. All rights reserved.

Microlab® is a registered trademark of Hamilton Company.

NIMBUS® is a registered trademark of Hamilton Company.

VANTAGE Liquid Handling System® is a registered trademark of Hamilton Company.

The Microlab® STAR™, STARPLUS, STARLET, NIMBUS®, NIMBUS HD, and VANTAGE Liquid
Handling System® will be referred to as STAR, NIMBUS, and Microlab VANTAGE for the
remainder of this manual.

For the latest revisions of Hamilton manuals, drivers, and software, contact Hamilton
support.

VENUS Programming Practices

5

2 Introduction
2.1 Purpose
This document provides best practices for programming methods for Hamilton products.
These guidelines include a general approach to programming methods and descriptions of the
tools available to simplify programming. Using these processes and tools should make methods
more usable, shareable, and supportable.

2.2 Scope
These guidelines apply to all platforms that use Hamilton’s VENUS software. This includes
the ML STAR line’s VENUS software, NIMBUS software, and VENUS on VANTAGE.

Exceptions to these guidelines are understandable, and even expected. Different
applications have different needs, and the methods that automate these applications must
accommodate these needs. That said, the guidelines in this document should be followed
whenever possible.

These guidelines are intended for individual programmers working on a specific
workflow. Different guidelines may apply for larger projects where multiple programmers are
involved, or in cases when a method must be distributed and shared across multiple sites.

2.3 Related Documents
This document assumes familiarity with VENUS software. Refer to the appropriate
Programmer’s Manual for details about programming for a specific instrument.

For basic information on pipetting and automated liquid handling, refer to the Liquid
Handling Reference Guide.

For best practices for programming Assay Ready Workstation (ARW) methods, refer to
the ARW Programming Practices.

VENUS Programming Practices

6

3 The Process
This chapter provides a general guideline for each stage of the method programming
process.

3.1 Before Programming
Prior to any programming, it is important to understand what the project needs as much
as possible. Avoid making assumptions which could lead to wasted effort and time.

3.1.1 Review the System Configuration
Review the system configuration and discuss with the pre-sales team or system owner.
Identify any key features, project commitments, and personal training gaps with respect to the
product configuration or included devices. Communicate and address these gaps with
management and colleagues.

3.1.2 Review the Requirements
Consider each requirement for the workflow. How will the deck be set up? What is the step-
by-step process for completing the method? These questions will drive how the method is
programmed. The following factors should also be considered, even if they are not explicitly
covered in the project’s requirements:

• The required throughput compared to the system’s capacity

• Any access restrictions caused by the system configuration that could limit the process
or increase the complexity of the method – for example, systems with more than 8
independent channels cannot access all locations on the deck, which is not always
captured in the software

• The volumes used, and the minimum corresponding number of tips, reagents, and other
consumables

• Assay parameters such as timing and temperature

Identify any gaps in the training or knowledge required for programming the method and
consult subject matter experts for assistance when necessary.

3.1.3 Collect Required Labware
Collect the input, output, and intermediate labware required for the method. Use existing
labware definitions whenever possible; create new definitions only if necessary. Minimize
labware usage whenever possible, even if multiple labware of the same type are available.

VENUS Programming Practices

7

3.1.4 Identify Liquid Types
Make a list of all liquid transfers in the method. This includes not just the liquid type and
volume, but how and under what conditions it will be pipetted. Determine which transfers can
use existing liquid classes, and which transfers (or liquid types) will require liquid class
development.

If liquid class development is required, then allocate the appropriate amount of time and
tools to complete the task. Refer to the Liquid Handling Reference Guide for further
instruction.

3.2 During Programming
While programming the method, maintaining attention to user level of understanding is
critical. The method should be as user-friendly as possible to ensure its robustness and
supportability.

3.2.1 Keep it Simple
Refrain from adding more than what the workflow requires. Every additional feature adds
complexity and test effort, which increases the scope of the project and its risk of possible error.

3.2.2 Make it Readable
Make sure the method can be easily read and interpreted by others. This approach
requires consistent use of functions like comments, grouping, variables, and sub-methods. Use
clear and concise language so that it is easily understood and meaningful to other users.

3.2.3 Avoid Copy/Paste Programming
Copying and pasting repeated steps can lead to lengthy methods with improper settings.
If steps must be repeated, consider using loops or sub-methods instead. Refer to section 4.6 for
details on sub-methods.

3.2.4 Keep it Organized
For most small projects, the use of a “one-layer” structure (a method with sub-methods)
is enough to organize a method. Refer to section 4.6 for more information. Functions like
grouping and commenting are still recommended for one-layer methods.

For more complex projects, adding sub-method libraries or additional layers might be
required to keep the method organized. In rare cases, a three-layer structure may be
required: a workflow layer with the method that is visible to the user, a logical layer with sub-
method libraries visible to the specialist, and an executing layer of the low-level commands for
control that are visible to the expert.

VENUS Programming Practices

8

Two-layer structure:

Three-layer structure:

3.2.5 Use Standard Libraries
When libraries are required, begin by using default libraries included with the software. If
additional functionality is needed, then utilize Application Software (ASW) and Hamilton
Standard Language (HSL) Extension libraries. If necessary, user-created libraries that have
been vetted and posted on knowledge bases may also be used.

Refrain from using personal or custom libraries. If any existing libraries are missing
features, consult with management and colleagues to include these features in future revisions
or new libraries. Test any new libraries thoroughly and create a help file for the library before
Implementing into methods or distributing.

Refrain from developing libraries that deviate from the Vector development environment.
Libraries that use a batch file, Python script, Microsoft Excel VBA, or other external formats to
perform data or sequence manipulation should be used only when necessary. Methods that use
these libraries must be documented using comments and help files.

Limit the use of libraries that require a separate installer. Using such libraries, while
sometimes unavoidable, can complicate sharing methods via the default export function, since
the additional installers must also be shared and run before using the method.

VENUS Programming Practices

9

3.2.6 Be Mindful of the Method Settings
Be mindful of the values used for settings like cLLD and fixed height. Refer to the Liquid
Handling Reference Guide for detailed descriptions of these settings and best practices when
using them.

3.2.7 Avoid Out-of-Bound Inputs
Be careful with user inputs for values that could cause errors like volume exceptions or
number of samples exceptions. Use confirmation checks and set ranges for variables
whenever possible prevent overage and errors.

3.2.8 Maintain Version Control
All methods should include a version identifier suffix in their file name. Refer to section
5.1 for more information. Include a comment to document the version history. Refer to section
4.1 for more information on using comments.

3.2.9 Create Test Methods
If the method uses on- or off-deck devices, create simple test methods for each device.
The tests should include device communication, control of its basic functions, and transport of
labware to and from the device. These methods are useful for device setup and troubleshooting.

3.3 After Programming
Test the method in incremental steps to avoid costly repeat test runs and to ensure that
method parameters are thoroughly tested.

3.3.1 Simulate and Review
Vector software includes a simulation mode that can catch a large amount of
programming errors. Run the method in simulation and review the generated log file to ensure
that the logic of the program is behaving correctly under many conditions. If the method cannot
be easily run in simulation mode, avoid extra programming that could add further complexity
and detract from the actual runtime mode operation code.

Exceptions may include devices that do not have a supported simulation mode. For such
devices, the status of the mode can be captured using the GetSimulationMode command in the
HSLUtil.hsl library. The device commands can then be skipped in simulation.

VENUS Programming Practices

10

Test against the extreme use cases such as minimum and maximum number of plates or
samples to ensure proper functionality prior to conducting actual test runs. Not all conditions can
be tested in a timely fashion, so an effort to mitigate higher-risk scenarios in simulation is
helpful.

3.3.2 Conduct Water Runs
Conduct and observe water runs for the method to troubleshoot any improper liquid
transfer steps. Correct these steps in the method and conduct another water run to confirm
that the steps are executed properly. Refer to the Liquid Handling Reference Guide for more
information on liquid handling methodology.

Ensure the method can run to completion without generating any errors before
proceeding. If there is some likelihood of error, determine the proper automatic error recovery
to allow for continual processing.

3.3.3 Test with Actual Liquids
Observe test runs with the actual liquids and address any issues, such as droplet
formation or imprecise volumes. Refer to the Liquid Handling Reference Guide for more
information on liquid handling methodology. Review the results with any stakeholders and
incorporate any feedback.

Be mindful of tip and consumable usage during testing in order to conserve consumables.

3.3.4 Clean Up the Method
Using the results from testing, identify any unnecessary parts of the method. Remove
unused or unnecessary labware, variables, and steps from the method to avoid clutter and
confusion. If any disabled steps are left in, provide comments to explain why they are included.
Remove any warnings in the Output window.

3.3.5 Save and Export
Make frequent backups of the program and maintain version control while saving and
exporting methods. Refer to sections 5.1 and 5.2 for best practices for saving and exporting.

VENUS Programming Practices

11

4 Use of Specific Functions
This chapter details tools and techniques for keeping methods organized.

4.1 Comments
Using comments is a basic requirement for providing organization and clarity to a
method. Use comments to separate and explain each section in the method. The function of
each section should be clear to a non-programmer who reads the comments.

Make the comments more visible by customizing the color and adding a “frame” of
special characters. The color helps to visually separate the sections in the method, and the
frame is helpful for separating the sections in log files.

Most comments should be traced to the log file, especially comments that separate different
sections in a method or sub-method. Comments that are used to explain steps to other users do
not need to be traced. For example, include untraced comments for math operations, sequence
manipulation, and complex file handling.

VENUS Programming Practices

12

Use a comment to track all version changes for a method or sub-method library that
includes a short description and its version history.

Write all comments in English. Additional comments in the local language can be added, but
for easy international distribution of methods, write them in English as well. GUIs and user
dialogs should remain in the language that is easiest for the routine user.

4.2 Tracing
Using trace commands is a basic requirement for easier support and troubleshooting.
Each instrument automatically traces some instrument functions, but many programming tasks

VENUS Programming Practices

13

are not traced by default. To ensure a complete record of the program’s execution, trace
functions must be manually added.

In general, always trace the following:

• Variables

• Comments

• Sequences made or sorted during runtime

• Arrays

• Sub-method function name

Make the traces more visible by tracing multiple variables in one command and by
inserting special characters.

Use different trace modes when necessary. For example, certain trace functions provide a
debugging mode which produces a lot of entries in the log file. This level of detail is helpful for
troubleshooting, but not necessary for routine use.

There are multiple trace libraries, some of which are included with the software by
default. It is recommended to use the ASW TraceLevel Library as it offers the most robust
functionality.

4.3 Variables
Variables are necessary for making a dynamic and user-friendly program. However,
variables should only be used for values that are repeated or that can change. Otherwise, fixed
values should be used.

4.3.1 Naming Variables
The name of the variable should describe what it contains, along with its scope and type.
For consistency, all variable names should follow a set format:

[scope]_[type]VariableName

The scope of a variable indicates its visibility and usage in or across methods and sub-methods.
There are three main scope types:

• Task-Local: The variable is visible in the main method and its sub-methods.

• Local: The variable is visible only within the sub-method where it was defined.

• Global: The variable is visible across methods and is used by the Scheduler software
and other programs.

A scope prefix is used to readily identify the scope of the variable. Local scope variables
that are used as input and output parameters for functions have their own specific prefix.

VENUS Programming Practices

14

Scope Prefix

Task-local t_

Local l_

Global g<Namespace>_

Function input parameter i_

Function output parameter o_

This convention allows for better organization and distinction of the variables when
developing in different parts of the method. While previous revisions of the guidelines
identified Task-local variables with an underscore as a prefix and local variables without any
prefix, the updated naming convention makes the scope more explicit for all variables. The
previous approach may still be used as deemed necessary.

Main method:

Sub-method 1:

Sub-method 2:

VENUS Programming Practices

15

The variable type is also indicated using a prefix.

Variable Type Prefix

Integer int

String str

Float flt

Boolean bln

Object obj

Array arr

Pipetting Sequence seq

Transport Sequence trp

File, timer, or device handle hdl

Other variable types var

For the actual name, use a short description in Pascal case (no spaces or other characters,
capitalize each word). In general, use one or two words to keep the names concise.

• t_intProcessedSamples: Task-local, integer

• l_strFilePath; Local, string

• i_fltPipettingVolume: function input, float

• o_arrSampleBarcodes: function output, array

• io_seqTips: function input and output, sequence

• gWorkflow_blnSimulateShaker: global, Boolean

• l_hdlWorklist: local, file handle

The following conventions are also helpful for consistent, clear variable naming:

• Use variable names in English

• Refrain from using abbreviations unless they are very common

• Avoid numbers unless they help clarify the content of the variable

• Prioritize readability and clarity over brevity

• Refrain from using all caps except for device names like “ML_STAR”

VENUS Programming Practices

16

4.3.2 Scoping Variables
The scope of variables should be as small as possible. Avoid using global variables.
Exceptions may include sub-method libraries and scheduler methods.

4.3.3 Declaring Variables
Variables should be defined at the beginning of the method or in a local sub-method for
quick access. Grouping them is also recommended, especially when declaring a long list of
variables – refer to section 4.4 for details. Once a variable is declared, refrain from typing it out
in all other parameter input fields. Instead, select the variable from the drop-down menu. This
approach helps prevent the addition of mistyped variables.

Do not use the Variable window to set starting values. This window is not visible by default
when starting VENUS, which can cause confusion when it contains variable assignments.
Delete any unused variables from the Variable window to avoid confusion while programming.
Enabling Delete Unused Variables in the Method Editor also facilitates this function.

Trace all variables that are not automatically traced to the log file. Refer to section 4.2 for
details on tracing.

4.4 Grouping
Grouping helps organize methods by collapsing sections of related steps. Use grouping to
hide complex sections or long lists of variables.

VENUS Programming Practices

17

Differentiate groups by assigning different icons from those available in the
Hamilton\Graphic folder. For example, use the assignment icon for groups of variables, or the
barcode icon for barcode matching logic.

VENUS Programming Practices

18

Keep in mind that grouping is not a substitute for comments. Use comments in addition to
grouping to clearly indicate and trace different sections of the method.

4.5 Naming Labware, Sequences, and System
Decks

4.5.1 Labware and Sequences
The default names for labware added to a deck are unclear, and sometimes inaccurate.
Changing these names makes them more identifiable both in the method and in log files, since
only the name in the deck layout is traced.

For example, instead of a default name like “Cos96Rd_0001”, a name like
“SourcePlate96_01” can be used. This approach allows for easier changes to labware and
clearer default names for the automatically created sequences. For custom sequences, follow
the naming conventions in section 4.3.1. Remove unused sequences to avoid clutter and
confusion during programming.

4.5.2 System Deck
If the system deck is assigned to only one method, then assign it the same name as the
method with a suffix like “_layout” to differentiate it from the method. If one system deck is
designed to accommodate multiple methods, then name it based on the overall process with a
suffix like “_layout”.

VENUS Programming Practices

19

4.6 Sub-Methods and Libraries
One way to organize methods with multiple lengthy transfer steps is to separate sections
into sub-methods. This approach allows for better readability and clarity of the method.

Refrain from creating sub-methods with lots of parameters. In general, sub-methods and
sub-method library functions should be limited to a maximum of 8 input/output parameters. Sub-
method libraries should also be limited to 20 functions. Sub-methods should be annotated with
descriptions and include acceptable expected input ranges and output values.

Sub-method libraries should include a return value to indicate success/fail. The return could be
a Boolean value for success/fail or an error code value if the function is for a device command.

As with variables, use a short description in Pascal case to name each sub-method. In
general, use no more than four words to keep the name concise.

Refrain from using underscores unless needed to interrupt the order that the sub-methods are
arranged.

VENUS Programming Practices

20

All sub-methods should implement and trace the name of the sub-method and indicate the start
and end of the function. See below for example code that can be re-used for any sub-method:

Example code to include at the start of the sub-method:

Example code to include at the end of the sub-method:

4.7 Timers
When implementing timers in a method during development, avoid enabling the
stoppable timer option. If left enabled, it could allow for the possibility of human error during
an actual run. Instead, enable timers with a short value of 1 second when in development or
simulation mode. The timer value can be conditionally assigned with a variable. This approach
allows for the verification of set and wait for timer functions without having to incur the actual
wait time required for the process step.

4.8 User Dialogs
Custom dialogs can greatly improve the appearance and usability of the method. The use
of some visual libraries may be required for ease of use and advanced functionality.

VENUS Programming Practices

21

The standard Hamilton template is a useful starting point. Use the default icons to identify
alerts and statuses to the user. Adjust the dialog and font size as necessary for clarity and use
the Group Box function to call out inputs and outputs more clearly.

When the method contains several custom dialogs in succession, include an option to
allow the user to go back to previous dialogs. Allowing a user to do so improves usability, as
it allows the user to correct their inputs without having to restart the method.

ASW Standard Dialogs may be used as an alternative under certain circumstances:

• The desired functionality is not available through normal custom dialogs

• The method requires a high level of standardization (such as when the method will be
widely distributed)

The ASW Status Dialog can be helpful for lengthy methods with many steps and
sections. The dialog provides runtime updates immediately to the user. Including this function
requires more effort, but it can help with the adoption and usage of the method.

4.9 File Handling
Make a copy of any input files and work from the copy instead of the original file. Working
from the copy can prevent errors that could occur if the user manipulates the original file during
runtime.

VENUS Programming Practices

22

Make sure that folders for any output files have suitable access rights. The
Hamilton\Logfiles folder is a good default, since the VENUS software must have read/write
access to that folder to function properly. If the output file must go to a network or other location,
save the file to the Logfiles folder first, then make the copy to the destination folder. This
approach helps ensure the original copy will always be created and recovered in case the copy
command encounters a conflict.

When using default File handling commands in VENUS, incorporate the Error Handling
by the User function to capture any error that results in a type cancel. The use of this
function allows the programmer to provide a more informative and clear user output upon error
and the ability to try again.

4.10 GUIs and Visual Libraries
Hamilton’s VENUS software is not intuitive to navigate on its own. The editors provide little
direction once they are opened, and existing files are saved by default to directories that can be
difficult to find. The use of a graphic user interface (GUI) can help organize method files and
provide a more intuitive interface for the user.

Several GUIs are available, such as the Hamilton Method Manager 2 and the Application
Launcher. These GUIs require their own installers, which are located in the online Resource
Center. For methods used with a formal product, a formally released and version-controlled GUI
software must be used.

The Method Manager 2 is a desktop application that is intuitively designed to simplify
user interactions with VENUS. This latest version allows one to launch and organize methods,
access editors and folders, and manage log files more effectively. This version has more
modern Hamilton branding and support for full/widescreen views and touch screens.

VENUS Programming Practices

23

The Application Launcher is a program that offers a list of shortcuts to run VENUS
methods for the STAR, NIMBUS, or Microlab VANTAGE. Pre-set and customizable icons can
be configured for each method. Different command line options can be set to control the
execution of the called program.

When using NTRs, plate stacking, or specific plate or tip mapping, consider using Visual
libraries. These libraries include a GUI component during runtime, but also offer advanced
functionality to control and manage labware and sequences.

VENUS Programming Practices

24

5 Saving and Exporting
The following sections describe the best practices for saving and exporting methods. In
general, version control and maintaining backups are the most critical practices.

5.1 Saving

5.1.1 Folder Structure
Save methods, custom libraries, and labware within their respective Hamilton directory
folders. All project-specific files should be grouped in subfolders for each project. Keep files
needed for simulation runs and archived drafts of methods in clearly labelled folders within
these subfolders.

5.1.2 Versioning and File Naming
All method and sub-method library names should include a suffix identifying the version
using a nomenclature that describes top, middle, and low-level changes.

Nomenclature = X.Y.Z (example: 0.2.5)

X

Top-level Version Control

Will require major changes to the method or sub-
method library when upgrading from one X rev to
another. Little to no similarities to the previous
top-level number. Examples: overhaul of the
entire method structure, addition of new hardware
or integrated devices, addition of new workflow
steps.

Y

Mid-level Version Control

May require some changes or parameters
corrections but will allow upgrade with easy
implementation. Mostly like the previous version
with some changes that would require updating
the method. Examples: adjustments to the
method structure, corrections to entire segments
of the method/workflow.

Z

Low-level Version Control

Should require no changes or parameter
corrections and will be almost identical to the
previous version. Examples: typos, variable
assignment corrections, volume calculation
corrections.

VENUS Programming Practices

25

Track all version changes within a sub-method titled “_VersionHistory” within the
method or sub-method library.

Use generic names when possible to make sharing methods easier. The names should
describe the project or application the method is for. Avoid using company names for folder,
method and labware files. All method names should include a suffix with the version number as
detailed above; when a new version is saved, move any old versions to an archive folder.

Follow the naming convention used for default labware when naming new labware
definitions. Include a prefix of the manufacturer and a brief description of the labware. For
example, a Falcon branded 96-well flat bottom plate would be named “Fal_96FlatBottom”. More
detailed info like the part number should go in the description field in the labware definition.

For larger projects, consider the use of a git repository for sharing and version control of
methods and their associated files.

5.1.3 Installation Folder
Maintain all materials necessary to recreate the system setup in the default Hamilton installation
directory in a subfolder named Hamilton Software and Manuals. Store all installers for the main
software, libraries, and drivers in this subfolder. Transfer electronic copies of the manuals and
periodically export method files here during development. Adding a shortcut to this folder on the
desktop of the computer is helpful for recreating the system setup on another computer.

5.2 Exporting
Export the method as a *.pkg file and include the original Hamilton files upon export.
Include any dependencies and file paths needed by the method in order for it to run properly
when imported.

Export methods to local drives before sharing them to shared drives, since exporting
directly to shared drives can corrupt files. Certain files such as liquid classes may not be
properly exported, so save backups of these files in their respective editors.

	1 Revision History
	2 Introduction
	2.1 Purpose
	2.2 Scope
	2.3 Related Documents

	3 The Process
	3.1 Before Programming
	3.1.1 Review the System Configuration
	3.1.2 Review the Requirements
	3.1.3 Collect Required Labware
	3.1.4 Identify Liquid Types

	3.2 During Programming
	3.2.1 Keep it Simple
	3.2.2 Make it Readable
	3.2.3 Avoid Copy/Paste Programming
	3.2.4 Keep it Organized
	3.2.5 Use Standard Libraries
	3.2.6 Be Mindful of the Method Settings
	3.2.7 Avoid Out-of-Bound Inputs
	3.2.8 Maintain Version Control
	3.2.9 Create Test Methods

	3.3 After Programming
	3.3.1 Simulate and Review
	3.3.2 Conduct Water Runs
	3.3.3 Test with Actual Liquids
	3.3.4 Clean Up the Method
	3.3.5 Save and Export

	4 Use of Specific Functions
	4.1 Comments
	4.2 Tracing
	4.3 Variables
	4.3.1 Naming Variables
	4.3.2 Scoping Variables
	4.3.3 Declaring Variables

	4.4 Grouping
	4.5 Naming Labware, Sequences, and System Decks
	4.5.1 Labware and Sequences
	4.5.2 System Deck

	4.6 Sub-Methods and Libraries
	4.7 Timers
	4.8 User Dialogs
	4.9 File Handling
	4.10 GUIs and Visual Libraries

	5 Saving and Exporting
	5.1 Saving
	5.1.1 Folder Structure
	5.1.2 Versioning and File Naming
	5.1.3 Installation Folder

	5.2 Exporting

