
 Quick Guide – RabbitMQ and VENUS

Page 1 of 5

Overview

This guide will assist the user in setting up and using a RabbitMQ server alongside the VENUS software. This includes
installing and configuring the RabbitMQ application as well as installing the HSLRabbitMQLib library. RabbitMQ is a
robust real-time messaging platform written with the goal of facilitating the communication between distributed systems
over a network or system components connected to the same computer. The HSLRabbitMQ Library enables VENUS
to utilize the messaging functionality of the RabbitMQ messaging platform, allowing for the programming of complex
automated systems. More specifically, automated systems which include more than one liquid handler, and one or
more robotic arms benefit from improved communication and timing between the individual components.

RabbitMQ and HSLRabbitMQLib Installation

1) Download and Install the HSLRabbitMQ Library and Application

a) Download the HSLRabbitMQLib installer from this link. Run the installer as an Administrator. When
prompted, select “Full Installation” from the drop-down to install the RabbitMQ server, its prerequisites
(Erlang and .NET Framework 4.5), and the HSL RabbitMQ Library.

https://download.hamiltonsupport.com/wl/?id=Jy9wMSRpRBroY66smjD0dLESbuCYVZcP

 Quick Guide – RabbitMQ and VENUS

Page 2 of 5

b) For further instructions to enable the “RabbitMQ Admin Web-Interface” and set a different username and
password, refer to Appendix 1. Note that these steps are not required but can be useful for security
purposes or to monitor queues/messages when setting up methods in VENUS.

Using RabbitMQ in VENUS

1) Programming with RabbitMQ

a) Open a method in VENUS and Add the HSLRabbitMQLib Library to the method, found in the “C:\Program
Files (x86)\Hamilton\Library\HSLRabbitMQ” folder.

b) Refer to the Help file, included with the library and accessible from the individual library steps, for
explanation on the individual steps and their required parameters. NOTE: by default, the username and
password for the ‘Connect’ step are “guest” and “guest”, unless changed using Appendix 1.

c) RabbitMQ is best used to have two separate
methods communicate with each other,
meaning two instances of Run Control will
be active, potentially on two separate
computers. A typical workflow will have the
methods connecting to the same
server/queue and sending/receiving
messages to each other. To facilitate this,
one method will often act as a primary which
sends a message to the secondary and
waits for a response (success or error). The
secondary method will wait in an infinite loop
checking for new messages, receive the
new message, act on the message, and
send a response when complete. Refer to
the following image.

NOTE: “React to Message” refers to the
actual instrument steps to be performed (i.e.
pipetting, transport, scanning, etc.); also,
messages do not need to be in JSON
format, however it can be useful to send
large amounts of data with multiple, varying
tasks.

 Quick Guide – RabbitMQ and VENUS

Page 3 of 5

2) Determine a Programming System Model

a) While the programmer is free to use RabbitMQ how they see fit, there are a preexisting communication
models that are worth understanding and implementing based on need. Two are outlined below, but there
are other options available (i.e. Peer-to-Peer and Coupled Clusters)

• Client - Server (Request - Response): This model is outlined in the workflow above. One method acts
as primary sending messages to the secondary, which reacts according to the request, and sends back
a response (success/error/data). An example of this in Hardware terms would be a Worklist Processing
Method sending a Message to a STAR Method with data on how to proceed. This effectively splits up
the data handling and the liquid handling / sample processing functions into two simpler discrete
methods.

• Actor Model: This model is more complex than the first. In this case there are multiple Queues and
multiple methods interacting with these Queues. An example of this would be a Worklist method
sending data to two separate STAR methods, which in turn send messages to a shared HMotion
method which retrieves and delivers plates to/from an incubator. While a single STAR and a HMotion
can be scheduled and managed with Scheduler, it's difficult to share a resource between two separate
schedules. In this case, the HMotion acts as a tertiary, and the STARs (secondaries) connect to
multiple queues according to the worklist sent by the primary Worklist Method.

Appendix

1) Enable the “RabbitMQ Admin Web-Interface”

a) Open the RabbitMQ Command Prompt from the Start Menu as an Administrator

b) In the window the pops up, type in “rabbitmq-plugins.bat enable rabbitmq_management” and hit Enter

 Quick Guide – RabbitMQ and VENUS

Page 4 of 5

c) Restart the RabbitMQ Service by using the Stop and Start programs found in the Start Menu, then open
an internet browser, and go to "http://127.0.0.1:15672" or "http://localhost:15672". Login with Username:
guest; Password: guest.

d) Use the “Overview” and “Queues” tabs to monitor messages passing to/from the server. Use the
“Admin” tab to change/add/remove usernames/passwords.

 Quick Guide – RabbitMQ and VENUS

Page 5 of 5

FAQ

Q: What do I include in a message?

A: A string of information that can be parsed by the receiving method, which is unique and specific to ensure
the correct reaction is performed by the receiving method. Consider using JSON and the HSLJSON Library to
generate/parse large amounts of data/instructions with multiple parameters. Additionally, file attachments can
be sent as part of a message (i.e worklists).

Q: What are message headers?

A: Headers are used as fields that describe the content of a message, but do not hold the actual content of the
message. An example of this would be sending a message with a "type" Header to tell the destination method
how to respond. They are not required, and often go unused in simpler processes.

Q: What is a Correlation ID?

A: A Correlation ID is an alphanumeric identifier of a message (GUID). Correlation IDs are generated
automatically if the field is passed an empty string variable. Correlation IDs can be useful to check whether a
received message corresponds to one that was sent. This same functionality can be programmed in using
headers and responses, or even message content, but with complex systems, or ones where the order of
messages matters, Correlation IDs can become a useful tool for keeping track of messages and their
responses.

Q: Why are old messages sent in previous methods being retrieved and messing things up?

A: Messages are stored in a queue until they are received or purged. It is prudent to use the PurgeQueues or
DeleteQueues steps at the end of a workflow to ensure message crossover does not occur. Queues can also
be purged through the Admin Web-Interface.

Q: Why am I receiving “left hand side of expression” errors?

A: The variables passed in/out of the HSLRabbitMQ Library steps are data-type specific and require
declaration/assignment to the given data type before being used in the step itself. For example,
“o_strErrorMessage”, which returns a description of an error must be declared as a string-type variable using an
Assignment step (i.e. t_strRabbitMQ_ErrorMessage = “”, in which empty double quotes denotes an empty
string).

Q: How do I prevent additional RabbitMQ traces from filling my Trace File?

A: Use the SetTraceLevel step from the HSLRabbitMQ Library (or ASW TraceLevel Library) to set the trace
level to RELEASE (1) or NONE (0) to limit the information written into the Trace File. It is suggested to use the
DEBUG level (2) when testing and developing a method, then setting to a lower level when the additional
information is no longer required.

Q: Can I send messages to other RabbitMQ computers/servers on the network?

A: Yes, IP Addresses of other computers hosting RabbitMQ can be configured in the RabbitMQ Connect step
by changing the “strHostName” parameter to the target IP Address instead of the default “localhost”.

